Pre-fresh Heifers

A Might not Equal B

Udder edema = dietary salt

Transition (pre-fresh) = 21 d

Early calving = increased profits

Growing Tomorrow's Herd

Gestation Length (GL)

- Holstein (Norman et al., 2009)
 - Heifers (277.8 ± 5.5 d)
 - Cows (279.4 ± 5.7 d)

- Factors influencing GL
 - Genetics, calf gender, twin, age of dam, and season of year.
- Short or long GL increased incidence of stillbirth, and dystocia (Nogalski and Piwczyński, 2012).

Courtesy of Dr. Noah Litherland

Two California dairies (3,335 Primi- and 4,909 Multiparous cows) Impact of gestation length

	Average	Short	Long	P-value
Mean gestation, d	276	266	285	
Range, d	270 to 282	256 to 269	283 to 296	
Milk production, lb./d	84.8	80.7	83.0	< 0.01 (SEM = 0.67)

	Primiparous			M		
Item	Average	Short	Long	Average	Short	Long
Cow#	3,725	475	311	2,546	287	841
Cow, %	82.6	10.5	6.9	69.3	7.8	22.9

Courtesy of Dr. Noah Litherland

Vieira-Neto et al., 2017

Dam/daughter interactions impact GL

- 1st lactation cows have <u>less body capacity</u> so <u>space limitations</u> can create fetal stress and early parturition.
- Similarly, cows calving in <u>heat stress</u> have shorter gestation periods than cows calving in cool season.
 - Evaporatively cooled late gestation cows had GL 3.5 d longer than cows not receiving cooling (Tao and Dahl, 2014).
- It is possible <u>heat stress promotes maturation</u> of the HPA-axis and shorter GL. (Vieira-Neto et al., 2017)

Courtesy of Dr. Noah Litherland

What gestation length do we use? 279?

- Heifer Calves (Sexed Semen) 1.7 d
- Heat Stress 3.5 d
- GL PTA Service Sires 1-3 d
- Calving Ease Sires 2 d
- Days in Pre-fresh Pen (21 d could equal 11 days)

Prepartum Management by Herd Size

	Description	<1,000 cows	>1,000 cows
Heifers	Age 1st calving, mo.	23.6	22.7
Dry cow	Days dry	54.9	54
	Dry cow stocking density %	161.8	104.2
	Hygiene score	1.2	1
	# pen moves dry off - calving	2.6	3.1

Number of Pen Moves from Dry off to Calving

Average: 2.86 High: 5 (2 farms) Low: 1 (1 farm)

Herd Adaptation – Pre-fresh Heifers

- Disease Exposure (Older Cows)
- Feed/Water/Resting Adaptation 3-5 days
- Social Adaptation 5-7 days
- Parlor and Travel Adaptation 2-3 days
- Oxidative Stress (Maybe Heifers Need More Time 28d?) (Maybe less moves?)

Pre-fresh Heifers..... Common A = B allegories

Udder edema = dietary salt

Transition (pre-fresh) = 21 d

Over-conditioned pre-fresh heifers = excess corn silage

Early calving = increased profits

Growing Tomorrow's Herd

An Employee-Owned Company • startingstrong.vitaplus.com

Journal of Dairy Science: 1988

- 4 Treatments (11 Heifers/Trt)

Lets look at where "They say" comes from

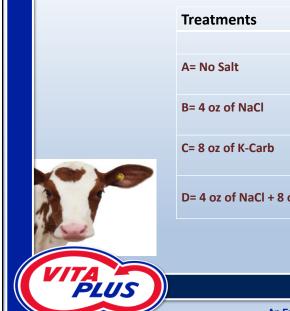
A= No Salt B= 4 oz of NaCl

C= 8 oz of K-Carb

D= 4 oz of NaCl + 8 oz of K-Carb

1= No edema

2= Slight edema


3= Moderate edema

4= Severe edema

5= Very severe edema

Growing Tomorrow's Herd

Lets look at where "They say"

comes from

Treatments	Udder Edema Scores				
	-4 to 0 d pre-calving 1 to 5 d post-calvi				
A= No Salt	3.48 a	3.74 a			
B= 4 oz of NaCl	3.81 b	3.82 b			
C= 8 oz of K-Carb	3.91 b	3.69 ab			
D= 4 oz of NaCl + 8 oz of K-Carb	3.79 ab	3.40 a			

Growing Tomorrow's Herd

An Employee-Owned Company • startingstrong.vitaplus.com

Journal of Dairy Science: 1988

- Statistics (Incorrectly Analyzed as Analysis of Variance)
- Data are Categorical

Conclusion: Feeding 4 oz of salt significantly increased udder edema 1-5 d postcalving by 0.08 hundredths of an edema score (?)

- 4 Treatments (11 Heifers/Trt) (Insufficient No# of Heifers?)

A= No Salt B= 4 oz of NaCl

C= 8 oz of K-Carb

D= 4 oz of NaCl + 8 oz of K-Carb

- Edema Scoring System (May or may not randomly distributed?)

1= No edema

2= Slight edema

3= Moderate edema

4= Severe edema

5= Very severe edema

- Biological Mechanism(?)

Growing Tomorrow's Herd

- 1950s - Udder edema = dietary protein

- 1960s - Udder edema = level of grain feeding

Lets look at where "They say" comes from (Generalized)

- 1970s - Udder edema = dietary salt

- 1980s - Udder edema = dietary K, Cl, Na, Ca

- 1990s - Udder edema = genetics, season of year, dietary Fe

To date true biological mechanisms behind udder edema are not well known.

What if udder edema is not mediated by diet?

Growing Tomorrow's Herd

An Employee-Owned Company • startingstrong.vitaplus.com

Udder Edema

Miller et al., (Selected Data)

Table 1. Milk yield at PM milking and decrease in udder floor area after milking in heifers supplemented or unsupplemented prepartum with vitamin E (Mueller et al., 1989).

	Udder s	dder shrink			Milk yield		
Day ¹	Control	Vitamin E	P > F	Control	Vitamin E	P > F	
	(%)		(kg)				
1	14.7	22.9	0.10	3.6	6.9	0.02	
2	19.0	24.5	0.16	4.7	8.4	0.01	
3	16.0	24.4	0.02	6.0	8.2	0.01	
7	24.4	26.6	0.57	7.8	9.7	0.10	
14	38.4	39.2	0.86	10.3	12.3	0.08	
¹ Day plus 1 equals day of lactation.							

Table 3. Odds ratios^a describing relationships among steroid hormones and udder edema in periparturient heifers (J.K. Miller, Univ. of Tennessee; Unpublished).

portpartations foliotis (c.r.s. willion, Orliv. or Torritosaco, Orlpublianca).						
	Plasma antioxidants	Udder edema				
Udder edema	0.21 ^b					
Corticosterone (C) ^c	1.12	2.14				
Estradiol (E ₂) ^d	1.11	0.42				
Progesterone (P ₄) ^c	1.20	1.37				
C/E ₂ ratio	0.16 _b	3.89 _b				
C/P ₄ ratio	0.64	1.62				

[®]If statistically significant, the relationship denoted by an odds ratio is positive if >1.0 and negative if <1.0.

^bP < 0.05.

Synthesized independently of 17α-hydroxylase or 17,20-lyase.

dSynthesis dependent on 17α-hydroxylase and 17,20-lyase.

Comparison of biochemical measurands determined in sera from heifers with udder edema Healthy heifers (n=35) Affected heifers (n=35) P-value Measurands Na+ (mmol/L) 139.23 ± 2.71 141.62 ± 2.89 NS K+ (mmol/L) 4.35 ± 0.31 4.41 ± 0.47 NS Cl⁻ (mmol/L) 102.46 ± 2.75 103.14 ± 3.27 NS Ca²⁺ (mmol/L) 2.46 ± 0.05 2.30 ± 0.05 < 0.02 **Udder Edema** P (mmol/L) 2.26 ± 0.07 1.86 ± 0.07 < 0.001 Ir. J. Vet Res., 2015 Mg²⁺ (mmol/L) 0.93 ± 0.03 0.98 ± 0.02 NS TG (mg/L) 287.7 ± 11.3 260.6 ± 9.0 < 0.05 Cholesterol (mmol/L) 4.24 ± 0.35 3.28 ± 0.15 0.001 HDL (mg/L) 902.5 ± 53.7 733.2 ± 21.7 < 0.001 LDL (mg/L) 666.4 ± 100.9 475.2 ± 48.5 < 0.05 VLDL (g/L) 157.9 ± 14.1 141.7 ± 6.4 NSTotal protein (g/L) 78.7 ± 2.9 71.3 ± 1.2 < 0.01

Reactive Oxygen (Stressors) - Vaccinations - Disease exposure - Crowding - Pregnancy - Environmental changes - Diet Molecular Cellular Oxidative **STRESS Damage Effects** Lipids & Fatty Acids Amino Acids Membrane Damage Loss of Organelle Functions H₂O₂ Reduction in Metabolic Efficiency Nucleic Acids Pigments Reduced Carbon Fixation Electrolyte Leakage **Chromatid Breaks** Mutations **Antioxidants** - Enzymes (SAT, GPX, CAT) - Zn, Se, Cu, Mn - Vitamins (C, E, A, Beta Carotene) - Diet (Phenolic, lignans, etc)

Oxidative Stress Markers in **Transition Dairy Cows** Konvicna et a., 2015 MDA (malondialdehyde) 0.8 0.7 An increase in free radicals causes 0.6 overproduction of MDA. 0.5 Malondialdehyde is a marker of 0.4 oxidative stress (lipid peroxidation). 0.3 0.2 0.1 0

Possible Clinical Manifestations of Oxidative Stress in Dairy Cattle

- · Udder Edema (Purposed by Miller et al.,)
 - There is minimal evidence that dietary NaCl causes udder edema........
 - There is some evidence that Vit E and Se (antioxidants) increase udder shrink
 - There is evidence that heifers with udder edema have altered lipoprotein mechanisms
 - Maybe we should be feeding more antioxidants to pre-fresh heifers?
- Post-partum mastitis (0-3 d)
- · Retained placenta
- Metritis

Udder Edema in Pre-fresh Heifers – Lets be honest

- The cause is complex and we don't know for sure
- · Dietary NaCl and K theories are very weak at best
- Stress + Colostrum Formation + Immune System likely depletes antioxidant/anti-inflammatory systems
- Reduce stress, disease pressure, overcrowding.
- Provide anti-inflammatory feeds (?)
 - Vitamin E
 - Selenium
 - Plant lignans
 - Omega 3 FA
 - Gama tocopherol
 - Beta Carotene (Provitamin A)
 - Phytochemicals (Various Feeds)

Growing Tomorrow's Herd

Pre-fresh Heifers..... Common A = B allegories

Udder edema = dietary salt

Transition (pre-fresh) = 21 d

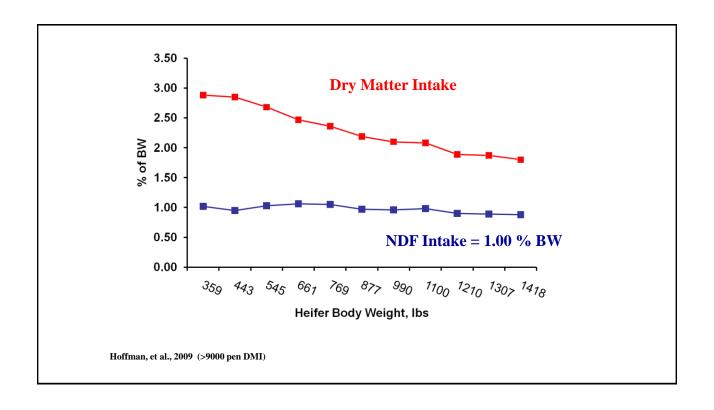
Over-conditioned pre-fresh heifers = excess corn silage

Early calving = increased profits

Growing Tomorrow's Herd

An Employee-Owned Company • startingstrong.vitaplus.com

Review


Does Corn Silage Contain to Much Energy for Heifers?

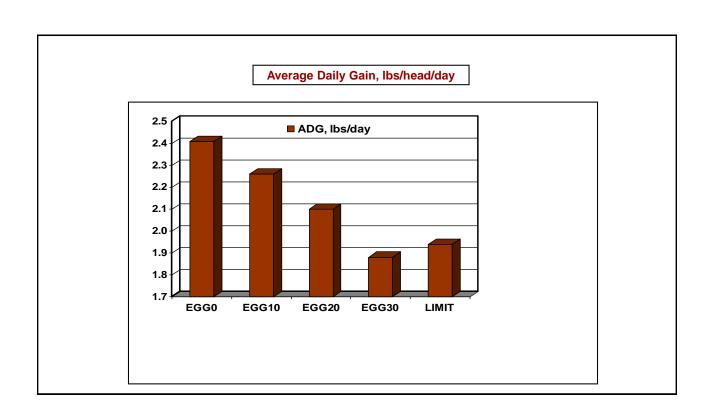
Or

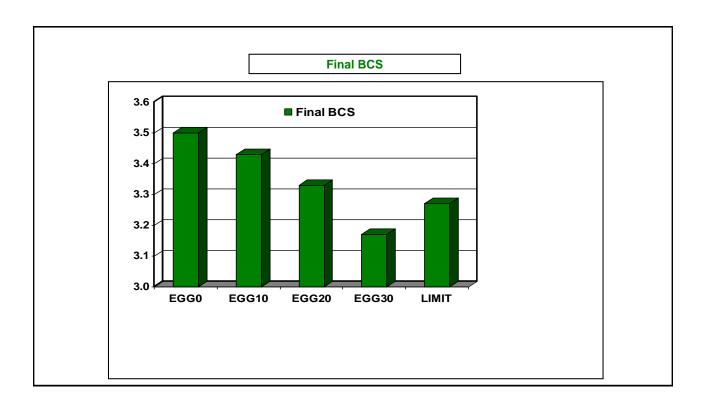
Do Heifers Consume More Feed When Fed Corn Silage?

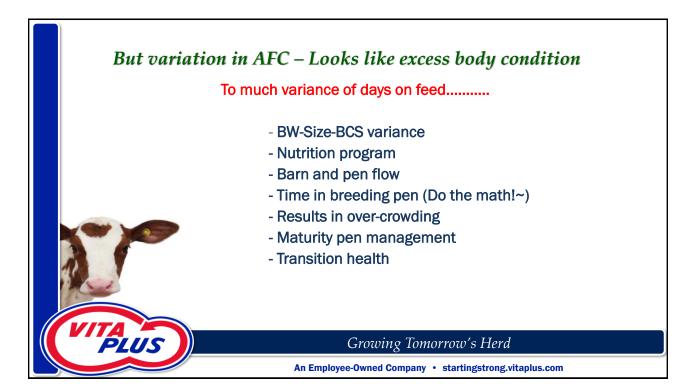
Its Both

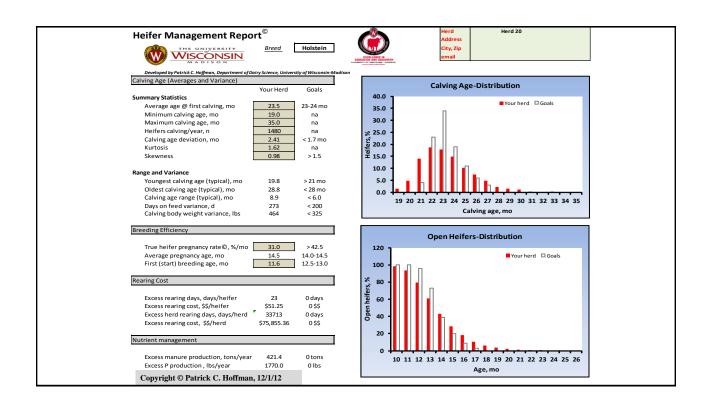
Napkin Math

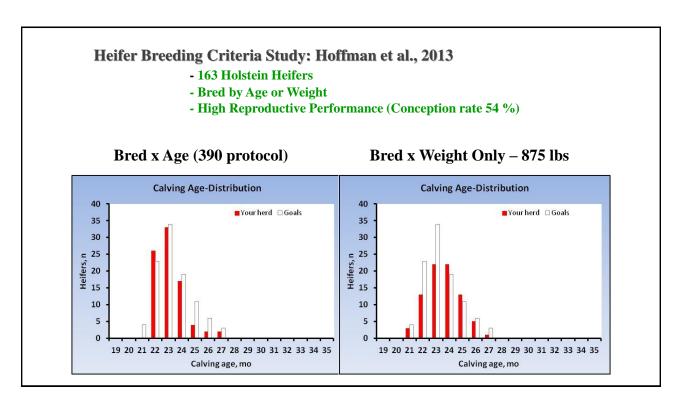
A 1000 lb Holstein heifer eats 1.0 % of her BW as NDF


She will eat 10 lbs of NDF $(1000 \text{ lbs } \times 0.01 = 10 \text{ lbs})$


Fed a diet @ 40 % NDF she will eat 25 lbs of DM (10 lbs/0.40 = 25 lbs)


Fed a diet @ 50 % NDF she will eat 20 lbs of DM (10 lbs/0.50 = 20 lbs)


1 1	ets	2 n		\it/	re
	IC12	ан		31 I C	:I 3

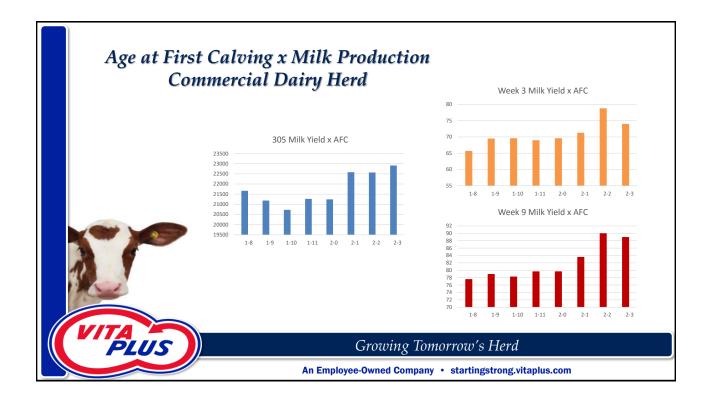

	Diet				
Component	Control	10	20	30	LIMIT*
DM	40.1	39.9	40.5	40.6	40.1
СР	12.9	13.0	13.1	12.9	12.9
NDF	39.6	43.0	45.6	48.7	39.6
BW, lbs	939	928	931	925	920
NDF Intake, % BW	0.88	0.92	0.97	1.04	0.77

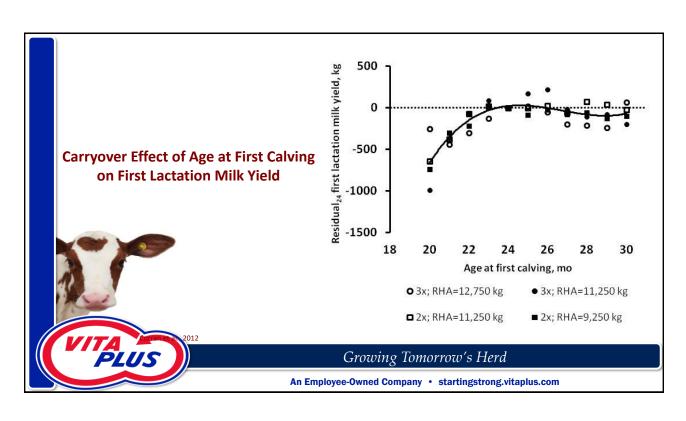
Modern Heifer Breeding Criteria - Example

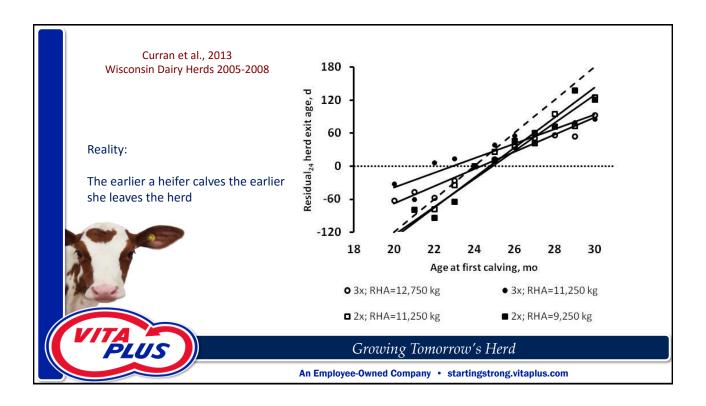
- Pre Breeding Screen @ 12 months
 - Low Genomic Heifers Culled
 - High Genomic ET Donors Identified
 - Heifers with Respiratory Culled
 - Lightweight Heifers Culled
 - Heifers > 825 lbs Cleared
- Corrective Mating Protocols Employed
- Cull Heifers Exit
- Haplotypes Identified
- Heifers Bred on First Heat @or > 13 months
- 1-2 Straws of Sexed Semen
- Breeding Limited to 4 Straws
- Open Heifers Culled

Pre-fresh Heifers..... Common A = B allegories

Udder edema = dietary salt


Transition (pre-fresh) = 21 d


Over-conditioned pre-fresh heifers = excess corn silage



Early calving = increased profits

Growing Tomorrow's Herd

