
Vita Plus Custom Harvester Meeting Bales and Baleage

Why make baleage / haylage (1)

- Conserving small amounts of forage
 - Less equipment and fewer workers are required
 - Small numbers of animals being fed at certain times of the year
 - Smaller farms, goats, sheep, (horses)
 - Small areas of grassland surplus to grazing requirements
 - Specialist crops such as low DCAB grass silage for cattle
- Reduced spoilage at feed-out.
- Easier to move than silage made in a silo.
- Baled silage trades well : UK, USA, Indian

sub-continent etc.

Why make baleage / haylage (2)

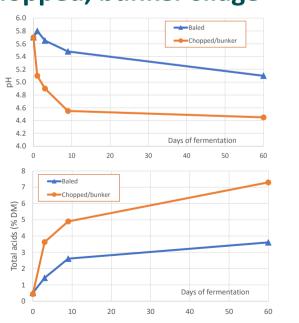
- Less weather dependent and easier to store than hay.
 - Big issue on coast, Scotland etc.
- Reduced machinery requirements at feed-out.
 - Fore-end loader and 'un-winder' for use in field (Australia, Russia)
- Lower capital costs than a silo
 - Costs of building a silo can be high (UK £110/Tonne stored)
 - Minimal capital costs for storing bales
 - Can be strict environmental controls and constraints for silos.
 - Fewer environ regulations on baled silage storage
 - However baled silage is more expensive to make than silo silage (UK - £30/T cf £24/T).

Why make baleage rather than hay?

- Shorter drying window
 - Approx 2 days for baleage
 - Approx 4-5 days for hay
 - (UK) Weather forecasts cannot predict that far ahead
- Less dust and poss. fewer mould spores
 - Esp for horses and small ruminants
- BUT washed-out / failed hay will not be saved by baling and wrapping
 - Baling and wrapping is not MAGIC!

Target dry matters?

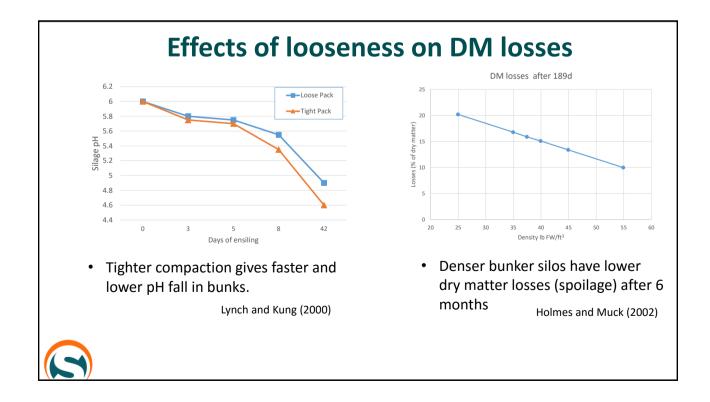
- Aim for 45 55%
- Too wet
 - Slump
 - Layers of plastic can split open
 - Clostridial / butyric fermentation
- Too dry
 - Restricted fermentation high pH
 - Not stable
 - Can heat up when opened

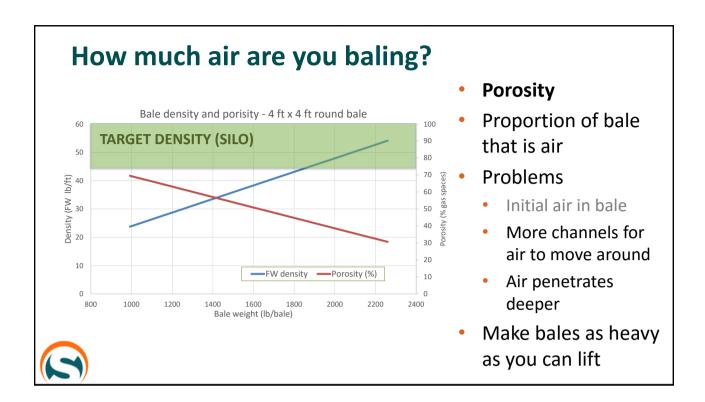

What can be baled?

- Just about everything can be baled.
- Grass, alfalfa and mixtures
- Corn silage (Holland, Pakistan)
 - Chopper harvested
 - Bales and wrapped in yard
 - Making 1 Tonne bales for selling
- Kale, sorghum, etc, etc.

Baled compared to chopped, bunker silage

- Baled silage
 - lower moisture
 - Restricts fermentation
 - Less acid needed to lower pH
- Usually not 'conditioned'
 - Lower available sugars
 - Slow fermentation





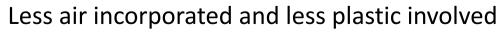
Compaction in bales

- All silage making is an anaerobic process
- Silos: compaction target = 44 48 lb.
 FW/cu ft.
 - Less air within the silage pile
 - Fewer routes for air to move along porosity
 - Smaller piles
- Bales
 - Make as dense as possible (>25 lb FW/cu ft)
 - ? Over 2000 lbs

Weight of bales

- Make as heavy as possible
 - Better compaction less air tracking in
 - Lower dry matter losses
 - Lower wrapping costs/Ton
 - Lower transport costs/Ton
- All those involved need to be able to lift them

Baler and wrapper developments


- Baling of forages started in 1970's
- Mature industry
 - Continual developments
- Modern machines highly automated
 - Computer controlled
 - Operator has become distant from the process
 - How many layers/turns, overlap etc.

Developments 1970's – 2010's

- Balers purpose built for heavy forages
- Moved from bagging to wrapping

Chopper knives

Knives just behind pick up reel

- Chop down to 3"-6" long
- Advantages
 - Heavier bales : less wrapping and transport
 - Less air : Better fermentation
 - Easier to mix into a TMR less ration sorting
- Disadvantage
 - Needs increased power at baling and slows baling

Wrapper balers

- Combines the baling and the wrapping
 - Quicker
 - Faster to get weather-proof
 - Fewer staff and tractors involved
- Bales wrapped in field
 - More prone to film damage
- Newest combo's allow for continuous
 - baling and wrapping process.

In line 'tube' balers

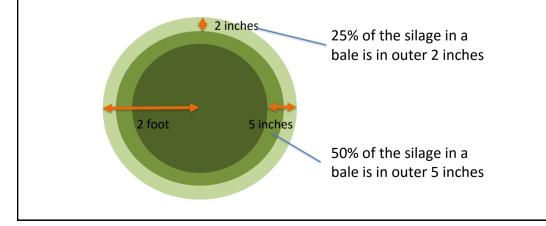
- Long 'sausages' of bales
- Much less wrap per bale
- No handling after wrapping
- BUT

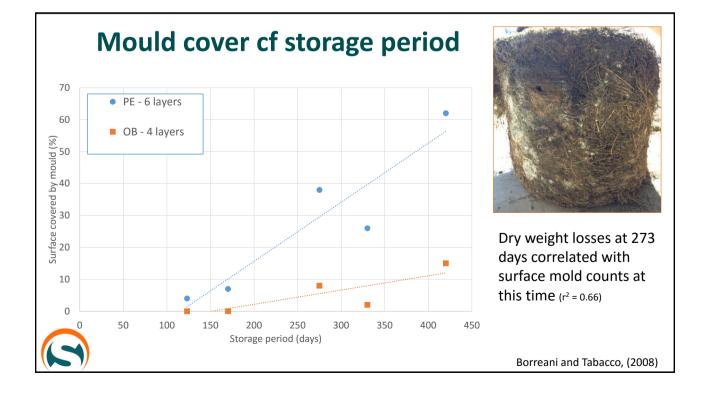
- Need good access when feeding out
 - Frozen ground (N America)
 - Feed out in drought dry ground (Australia)
 - Not suitable for UK climate too wet

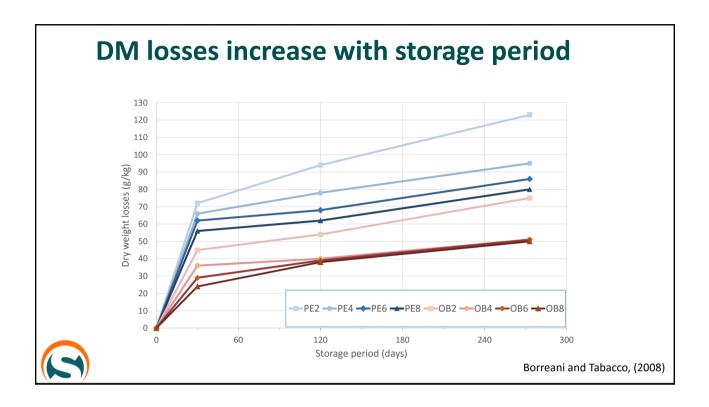
In chamber film wrapping

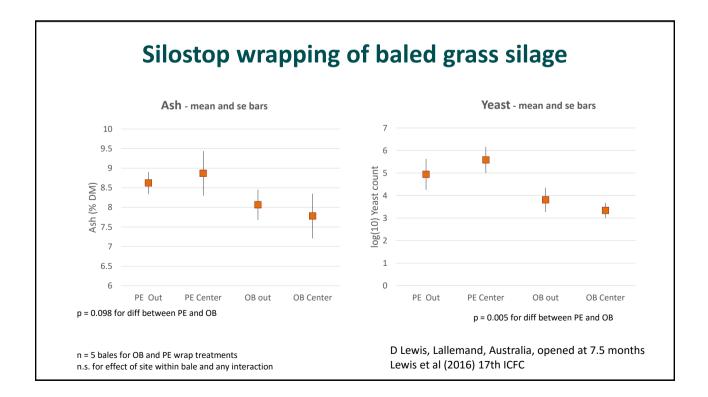
- Use a film rather than a net to wrap bale
 - Less expansion on release from chamber
 - Denser bale, better fermentation
- Film improves the oxygen barrier
- Easier to unwrap/use esp. when frozen in winter

Wrapping film – New type of film


- Original film = polyethylene
 - Stretchy, tacky, low cost
 - Poor as an oxygen barrier
 - High Oxygen Transmission Rate (OTR)
- Low OTR film being developed
 - Feed grade novel plastic lower OTR
 - Layered with PE film
 - Same stretch and tack, higher cost

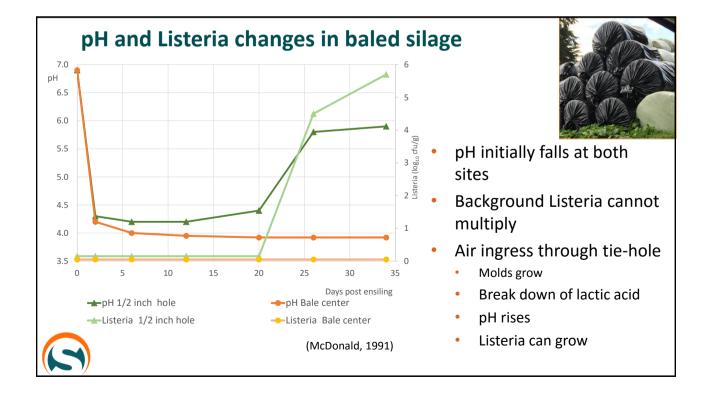

Why is an oxygen barrier important with bales?


- In silage piles we are concerned about outer 2ft of silage
- Most of silage in a pile is more than 2ft below surface
- Bales are smaller so have higher Surface Area : Volume ratio



How does this affect silage quality?

- Mold cover
 - Oxygen supports molds which break down acids
- Dry matter losses
 - As silage rots nutrient-rich dry matter lost
- Ash
 - As organic matter rots proportion of ash remaining increases
 - Appearance / palatability / disease risk



Listeriosis (Listeria monocytogenes)

- Disease of all ruminants esp. small ones
 - High mortality (+abortion), often related to Baleage
 - Food poisoning and abortion in humans (cheese)
- Likes MILDLY aerobic conditions
 - Does not grown if entirely anaerobic
 - Out-competed if in aerobic conditions
 - Does not grow below pH approx. 5.5
- High OTR film mildly aerobic, lactic acid broken down by molds – pH rises
- Low OTR reduce Listeria growth rates
 - Has been seen to reduce listeria eye problems in sheep

Combo wrapping – using different colours

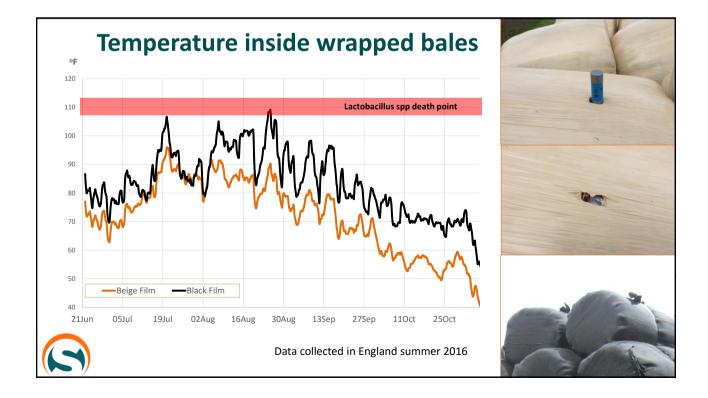
N Carolina, USA

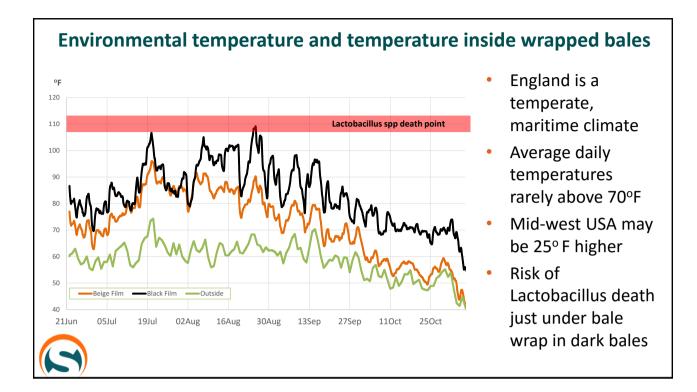
With more than 1 PSU can use combinations

- Silostop bale wrap on one spool
- Normal PE on other(s)
- Need min 2 layers of Silostop bale wrap in the stack of layers of plastic

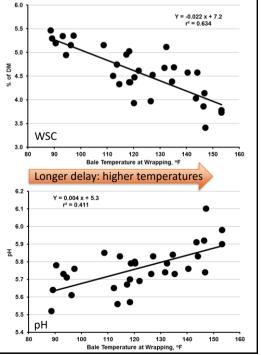
Bale colors

- What color films should you use?
- Growing rainbow of colors
- Dark will get hotter than light colors
- Does it matter?




Temperatures inside bales

- Fermentation / ensiling is a bacterial process
- Bacteria work faster in hotter conditions but have an upper limit
- Black plastic will heat up more in hot and in sunny weather
- Does this impact on silage quality just below the covering film?
 - Are desirable bacteria killed?


Bacteria death temperatures		
	Death point	
	٥C	٥F
L plantarum	42	108
L buchneri	45	113
Quoted by Marley, G (2016) 17 th ICFC		

How quickly do bales need wrapping?

- Coblenz et al (2016), US DFRC, WI
 - 59% moisture alfalfa (4ft x 4 ft round)
 - Wrapping delayed by 0,1,2 or 3 days
 - Delayed wrapping raised temps
 - Delayed wrapping:
 - Lowers sugars, raised buffering
 - Lowered ferm. acids, raise pH
 - SO: Wrap as soon as possible

How many layers?

- How long will you store the silage for?
- What type of film are you using?
 - What is the OTR?
- How tolerant are you of molds etc?
- How much do the wrapped bales need moving?
- How careful is the team?
 - How stemmy is the material?

How many layers?

- Each layer is 50% overlapped
- When bale fully covered 2 layers have been applied
 - count number of turns needed to cover bale
- On simple balers 18 22 turns applies around 6 layers.
- Can determine number of layers by careful dissection

Physical damage to bale wrap

- 6 layers of stretched PE film = 6 mil
 - Human hair about 2 mil
- The film is very thin and very fragile
- Move bales as little as possible after wrapping
 - In line wrappers better
- Big differences between operators
 - Being careful
 - Not going too fast eg lower don't drop.

SO – How many layers?

- Very user, crop and end-use dependent
- Research workers can make good baleage with 4 layers (Alfalfa, Coblenz, Prof Anim Sci 2016)
- 6 8 layers is general starting point
 - V stemmy crops old alfalfa
 - V low mold tolerance e.g. horses
 - ?listeria control
- 4 layers
 - Only v soft crops (grass) in round bales and great care
 - Will get damage and mold is this acceptable?

How to store bales – which way up?

- On their sides or on their end?
 - More layers of plastic on the ends
 - Open up more on ends if bales 'slump'
- In rows or stacks?
 - Rows easy access
 - Stacks good protection

Holes in bale film – and other coverings

- Many bales get holes
 - Few (4%) are patched
- Causes
 - Stems, handling material, transport, vermin, birds
- 3mm hole 8% loss of edible silage (6 months)
- 24mm hole 33% loss of edible
 - silage

Silopatches

- Size: 4 inch x 6 inch
- 36 yards long roll
- 216 patches per roll
- perforated between patches
- Very strong glue

Birds and other vermin

- A global problem
 - Birds, badgers, raccoons, parrots, koala bears, etc
- Ireland (McNamara, 2001)
 - 53% of farms report damage to bales when in field
 - 63% report damage in stack yard

Birds and other vermin

- Puncture oxygen barrier
 - As much as 5% of DM made inedible
- Spread disease: Salmonella, TB, etc
- Eat food conserved for the cattle
 - \$50/day losses
- Control ideas please
 - Many vermin are protected

<section-header><section-header>