

#### New Ways to Harvest and Process Forages



Vita-Plus Custom Harvesters Meeting Febr. 18<sup>th</sup>, 2015 Onalaska WI

Dr. Kevin Shinners

University of Wisconsin – Madison



### FRACTIONAL HARVEST RATIONALE

- Traditional WPCS <u>co-mingles</u> highly digestible and more difficult to digest fractions.
- Approaches to overcome this issue:
  - High-cut Silage (HCS)
  - Snaplage
  - HMSC or Dry Grain

**Stover Harvest** 



# HIGH-CUT SILAGE





3



# **S**NAPLAGE







# FRACTIONAL CORN HARVEST





5



#### FRACTIONAL TWO-STAGE CORN-SILAGE HARVEST

- Create a "new" silage intermediate between HCS and Snaplage plus a better quality 2<sup>nd</sup> harvest:
  - <u>Toplage</u> ear + some of the top plant to produce better starch, energy and fiber-digestibility than HCS but greater fiber content than snaplage.
  - <u>Stalklage</u> manage 1<sup>st</sup> operation to produce good quality maintenance feed.



### POTENTIAL BENEFITS OF TOPLAGE

- Corn-header adjusted for optimized nutritional goals:
  - Adjust header to yield as much top stalk and leaf as desired.
- Potentially improved kernel processing.
- Most digestible portion of plant harvested.

7



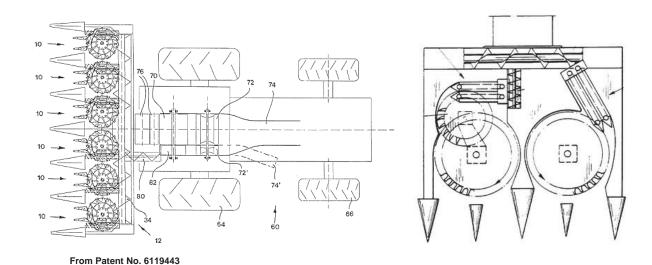
### POTENTIAL BENEFITS OF STALKLAGE

- Total yield per acre close to WPCS.
- High-fiber; low-starch "filler feed" available from 2<sup>nd</sup> harvest of same field.
- Potentially better quality than baled stover.
- New lime treatments could improve digestibility.








9



# FRACTIONAL HARVEST APPROACH







44



# CORN HEADER MODIFICATIONS

Stalk Cutoff Knives:







 SPFH configured with narrow tires and wheel spacers so rows would not be run over.



13



### FRACTIONAL HARVEST APPROACH











Forward Disks

Rearward Disks

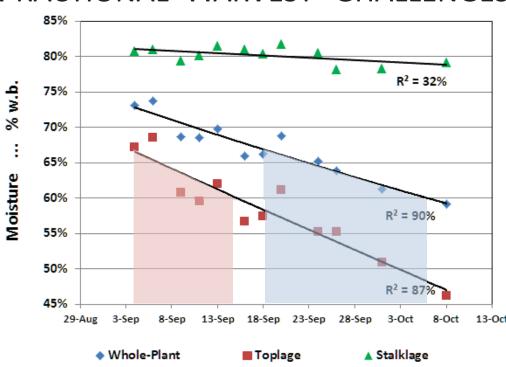
No Disks

41



# FRACTIONAL HARVEST APPROACH






### FRACTIONAL HARVEST CHALLENGES

- Managing yield split:
  - Grain is 50% of mass, so not much left after 1<sup>st</sup> pass.
- Managing moisture of both fractions.
- First-pass field traffic.
- Potential yield loss.



### FRACTIONAL HARVEST CHALLENGES



18

17



- Direct-cut:
  - Benefits: 1 additional pass; clean product.
  - <u>Challenges</u>: 1<sup>st</sup>-pass traffic; wet stalks; slow dry-down; poor leaf yield.



19

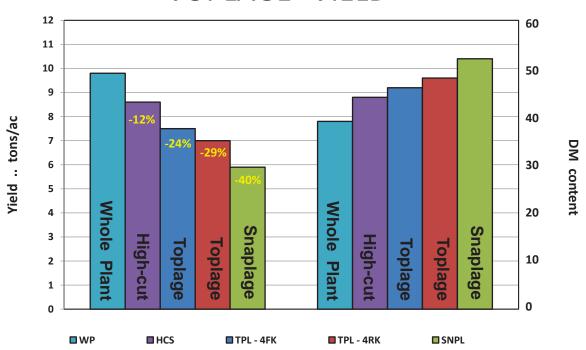


### FRACTIONAL HARVEST APPROACH

- Alterative direct cut:
  - Benefits: Improved leaf yield, but not common.



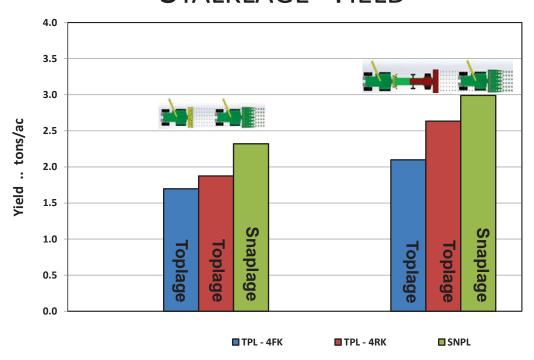



- Windrow then chop:
  - Benefits: dry-down; merge to match SPFH capacity
  - Challenges: Added operation; soil and rocks



21

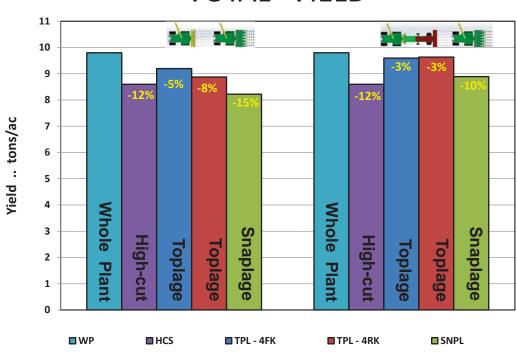



# TOPLAGE YIELD



22




# STALKLAGE YIELD



23



# TOTAL YIELD





# TOPLAGE COMPOSITION

| Configuration | СР      | NDF     | Starch  |
|---------------|---------|---------|---------|
|               | % of DM | % of DM | % of DM |
| Snaplage      | 8.8     | 19.5    | 58.6    |
| Toplage       | 8.9     | 32.1    | 43.1    |
| Whole-plant   | 8.2     | 40.3    |         |

25



# STALKLAGE COMPOSITION

| Configuration                      | СР      | NDF     | tNDFD – 48 h |  |
|------------------------------------|---------|---------|--------------|--|
|                                    | % of DM | % of DM | % of NDF     |  |
| <u>Direct-cut</u><br>After Toplage | 3.6     | 72.1    | 53.9         |  |
| Windrowed  After Toplage           | 4.3     | 70.2    | 53.1         |  |
| Windrowed  After Snaplage          | 5.3     | 68.5    | 55.5         |  |
| "Typical Stover"                   | 4 - 5   | 75 - 85 | 50 - 60      |  |



# CONVENTIONAL CORN STOVER









27



# TWO-PASS CORN STOVER







(http://poet-dsm.com/biomass)



# Two-Pass Corn Stover







http://www.newhollandrochester.com/cornrower.php

29



# SINGLE-PASS CORN STOVER







http://www.hillcotechnologies.com/jb510-media.html



# COMPARING STOVER HARVEST SYSTEMS

|                               | 3 – 4 Pass | 2 Pass | 1 Pass |
|-------------------------------|------------|--------|--------|
| Yield (dry ton/ac)            | 1-3        | 1-2    | <1     |
| Least impact to grain harvest | 1          | 2      | 3      |
| Field drying                  | 1          | 2      | 3      |
| Fewest operations             | 3          | 2      | 1      |
| Best nutrient composition     | 3          | 2      | 1      |
| Cleanest product              | 3          | 2      | 1      |

31



# STOVER BALE COMPOSITION

|        | Ash     | NDF [1] | NDFd [1]               | IVDMD [1]                | Starch <sup>[1]</sup> |
|--------|---------|---------|------------------------|--------------------------|-----------------------|
|        | "Dirt"  | Fiber   | Fiber<br>Digestibility | Overall<br>Digestibility | From Grain            |
|        | % of DM | % of DM | % of NDF               | % of DM                  | % of DM               |
| 1 Pass | 4.8     | 78.1    | 56.6                   | 65.9                     | 5.3                   |
|        |         |         |                        |                          |                       |
| 3 Pass | 12.7    | 83.3    | 36.0                   | 55.5                     | 0.4                   |

Source: Hillco Technologies

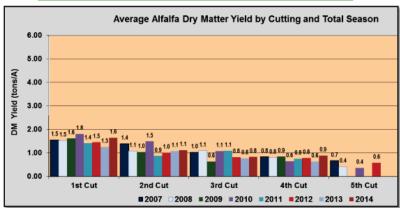


# ENHANCING STALKLAGE DIGESTIBILITY





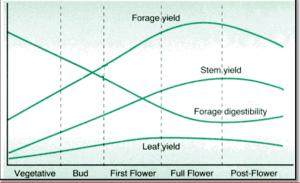
33



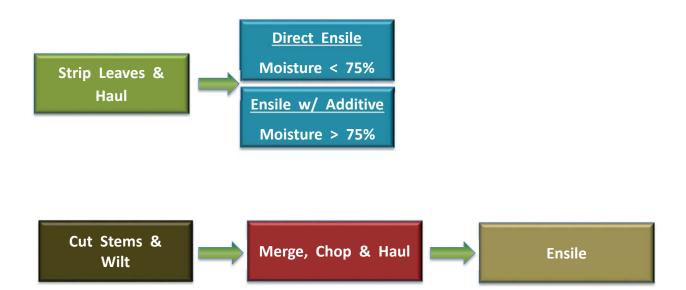

### LIME TREATED STALKLAGE

- Positive Attributes:
  - No additional water application.
  - No bale grinding.
- Challenging Issues:
  - Need much better application techniques.
  - Managing pH and aerobic stability.





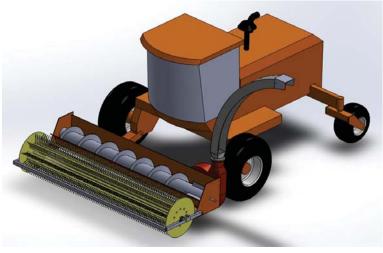


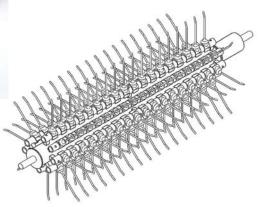


35




















રવ



- Positive Attributes:
  - Quality not so tied to cutting schedule.
  - Maximum of 3 cutting per year.
  - Single-day harvest possible:
    - Stems dry very quickly after cutting.
    - Fewer weather related losses.







41



### FRACTIONAL ALFALFA HARVEST



#### **Stripped Fraction**

Leaf Purity: 85 – 90%

• CP 23 – 32%

• NDF 22 – 35%

• WSC 9 – 12%



#### **Cut Fraction**

Stem Purity: 85 – 90%

• CP 10 – 12%

• NDF 55 – 66%

WSC 7 – 9%



### ALFALFA LEAF SILAGE

| Moisture | рН  | Lactic  | Acetic  | Butyric | Ethanol |
|----------|-----|---------|---------|---------|---------|
| %        |     | % of DM | % of DM | % of DM | % of DM |
| 77.0     | 4.4 | 7.8     | 2.7     | 0.0     | 0.5     |
|          |     |         |         |         |         |
| 83.2     | 5.9 | 1.6     | 4.9     | 5.1     | 0.9     |

43



- Challenging Issues:
  - Achieving > 25% DM needed for ensiling leaves.
  - Capturing effluent from leaf silages.
  - New feeding schemes needed.



- Alternatives for Leaves:
  - Post stripping "wet fractionation":
    - Protein supplement for animal or human use.





45