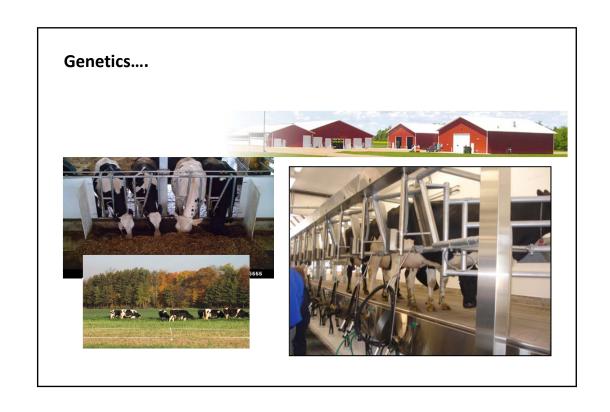
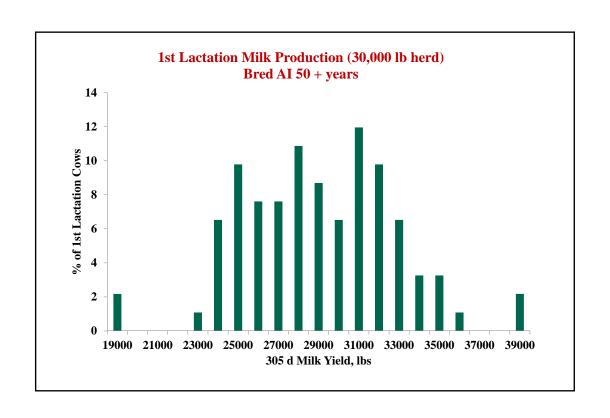
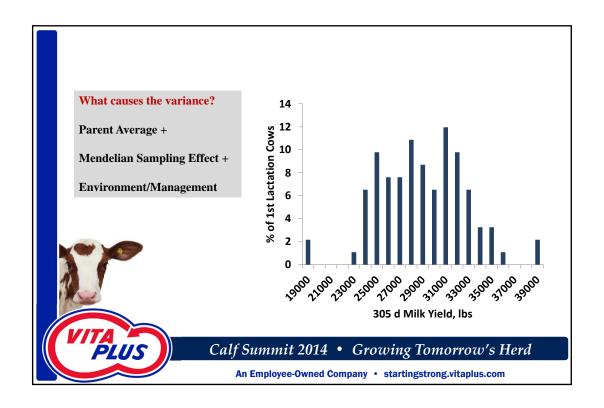
Real World Sources of Variance Associated with Heifer Performance

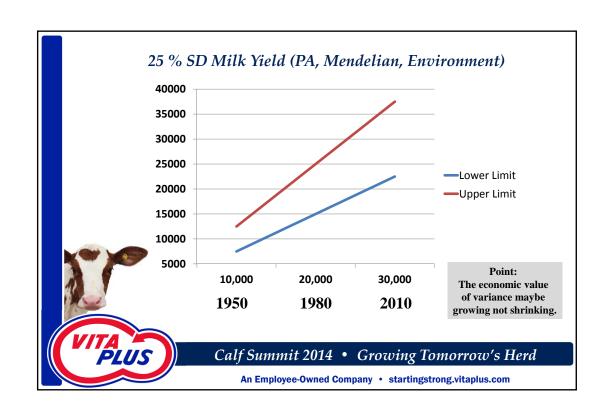
Calf Summit 2014 • Growing Tomorrow's Herd

An Employee-Owned Company • startingstrong.vitaplus.com

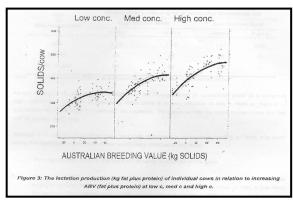

Raising Calves and Heifers: Some Questions....

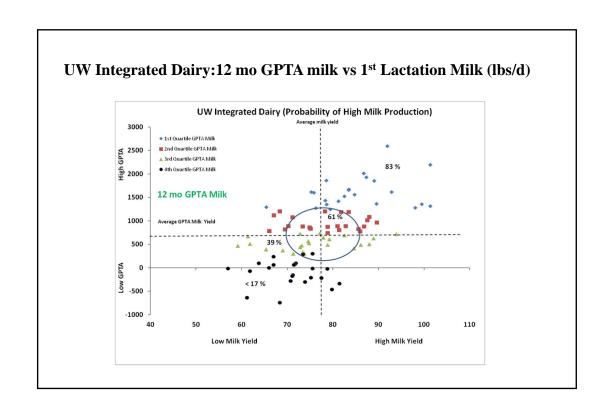

Why does a heifer become a great dairy cow?

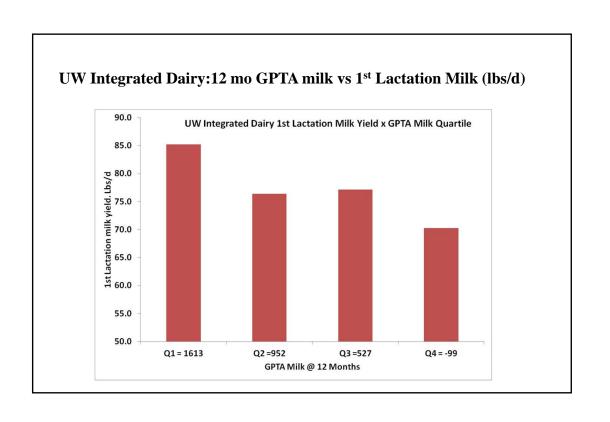

Are all calves born with potential to become great dairy cows?

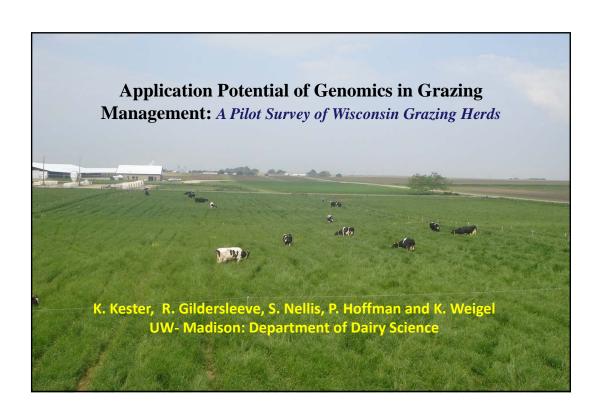

Do we only diminish their future milk production potential?

What is sort of BS-y, allegorical, kind of not real sure but it sounds good


Courtesy of Dr. Kent Weigel




Genotype by Environment Interactions



- Differences in the performance of daughters of high and low merit bulls became greater as the level of supplemental concentrates increased
- This indicates greater return on investment as management improves

Summary statistics: Milk, fat and protein yield with corresponding genomic predicted transmitting abilities (GPTA) of producer defined good and poor grazing cows.

Item	Good grazing cows	Poor grazing cows	P<
Production, lbs/305 d			
Milk yield	21805	16511	<0.001
Fat yield	782	642	<0.001
Protein yield	613	498	<0.001
Total fat-protein yield	1398	1150	<0.001
Genomic PTA			
Net Merit, \$	135	28.8	<0.001
Cheese merit	134	52	<0.03
Fluid merit	128	0	<0.001
Milk yield, lbs	259	-406	<0.001
Fat yield, lbs	15	-3	<0.001
Protein yield, lbs	5	-8	<0.001
Fat, %	0.01	0.04	0.25
Protein, %	-0.01	0.02	0.01
Parent average			
Milk, lbs	126	-236	0.02
Fat, lbs	6	-5	0.01
Protein, lbs	2	-3	0.15

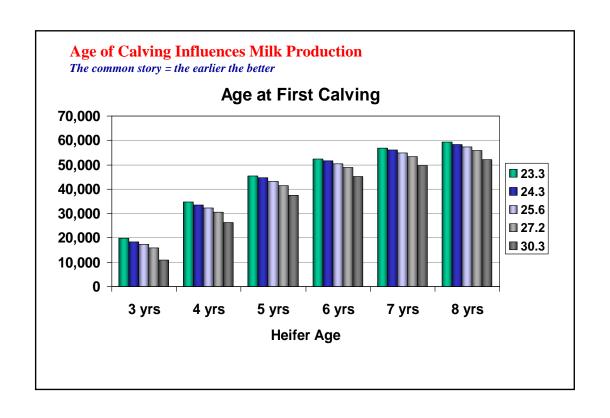
$Correlations\ between\ milk, fat\ and\ protein\ yield\ and\ genomic\ predicted\ transmitting\ abilities\ (GPTA)\ of\ producer\ defined\ good\ and\ poor\ grazing\ cows.$

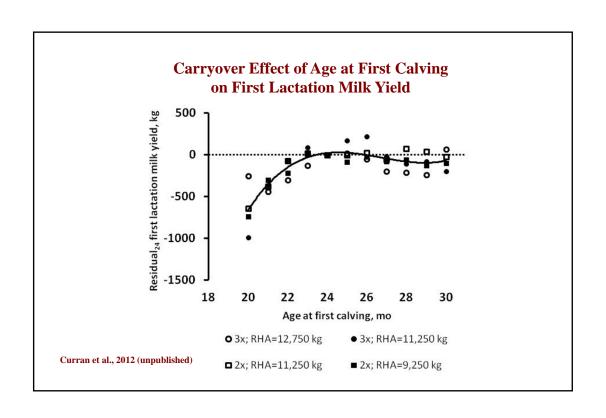
Item	Pearsons Correlations				
	Milk yield	Fat yield	Protein yield	Fat-protein yield	
Genomic PTA					
Net Merit, \$	0.37	0.44	0.32	0.42	
Cheese merit	0.21	0.39	0.27	0.37	
Fluid merit	0.50	0.46	0.36	0.45	
Milk yield, lbs	0.61	0.33	0.41	0.39	
Fat yield, lbs	0.32	0.32	0.27	0.31	
Protein yield, lbs	0.48	0.36	0.45	0.42	
Fat, %	- 0.33	-0.04	-0.14	-0.10	
Protein, %	-0.44	-0.07	-0.08	-0.08	
Parent average					
Milk, lbs	0.29	0.20	0.20	0.21	
Fat, lbs	0.15	0.13	0.15	0.13	
Protein, lbs	0.19	0.20	0.20	0.19	

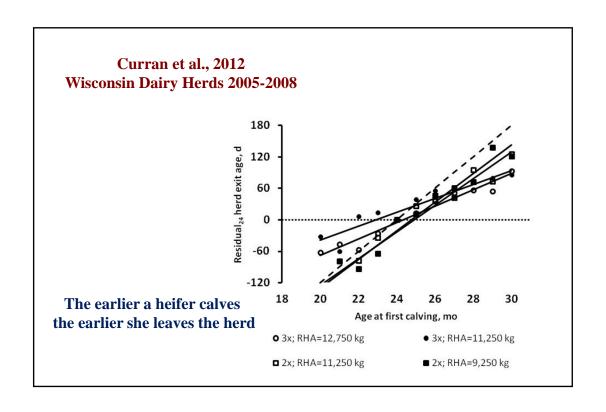
Red denotes significant correlations

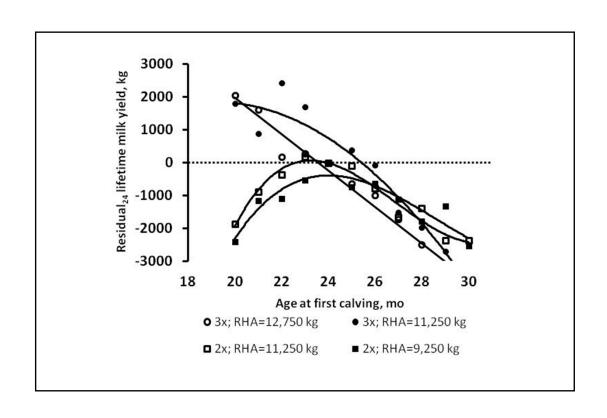
Calf Growth & F				
Trial	Treatment Differen	ice (lbs)		Sylvania Sylvania
Foldager and Krohn 1994	3092			
Bar-Peled et al., 1998	998			See Line
Foldager et a., 1997	1143	Onfarm ID Net merit (NM\$)	933 436	941
Ballard et al., 2005	1543	Breed Performance Index (BPI)	1791	1186
		Milk Yield (Milk)	1562	-677
Shamay et al., 2005	2162	Fat %	-0.05	-0.03
Rincker et al., 2006	1100	Protein % Genomic Individual Inbreeding	-0.04 11.4	0.02 12.3
Drackley et al., 2007	1841	HH1	F F	12.3 F
		HH2	F	F
Morrison et al., 2009	0	НН3	F	С
Moallem et al., 2010	1613			

305 day Milk and Pre-weaning ADG Cornell University

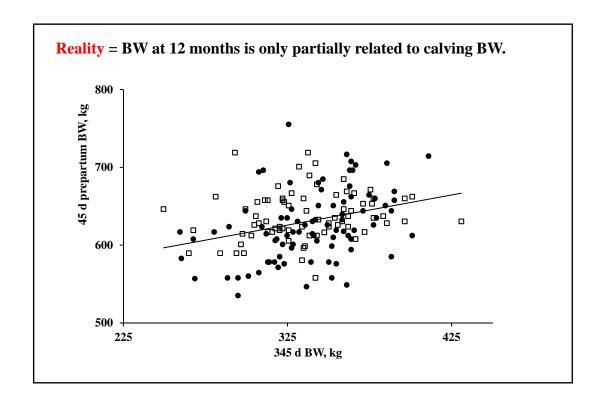

- 305d milk yield in a traditional analyses
- Year of calving (P < 0.001)
- Preweaning ADG (P < 0.005)

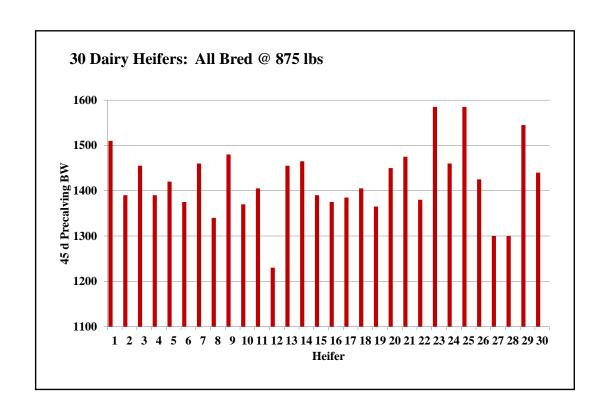


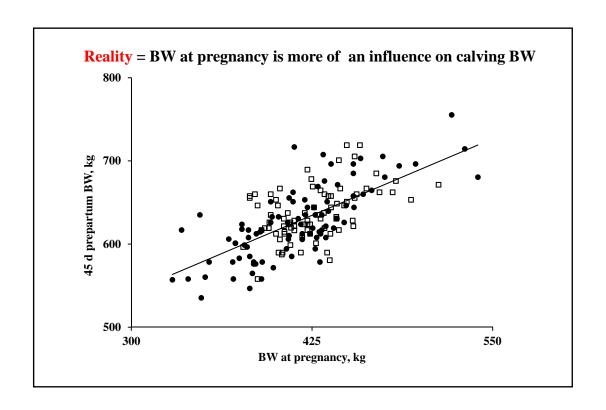

 For every 1 lb of ADG prior to weaning, milk yield increased 706 lb in first lactation


Cornell Study - Effect of Pre-Weaning Daily Gain on Milk Yield

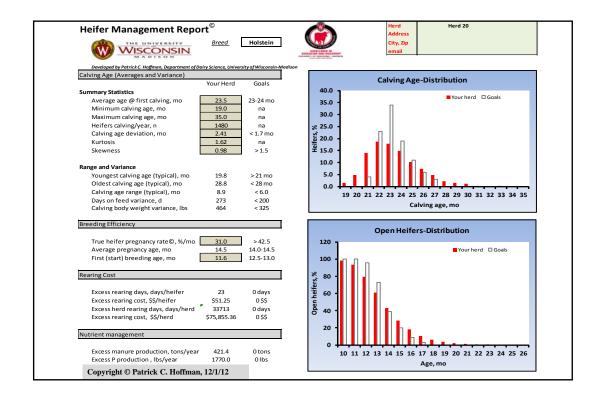
- 22% of the variation in first lactation milk yield was explained by pre-weaning growth rate up to 42 - 49 days of age
- Genomics accounts for 50-60 % of the variance in first lactation milk yield.
- Could genomics and calf ADG gain together account for 80 % of the variance in first lactation milk yield?
- We don't know.

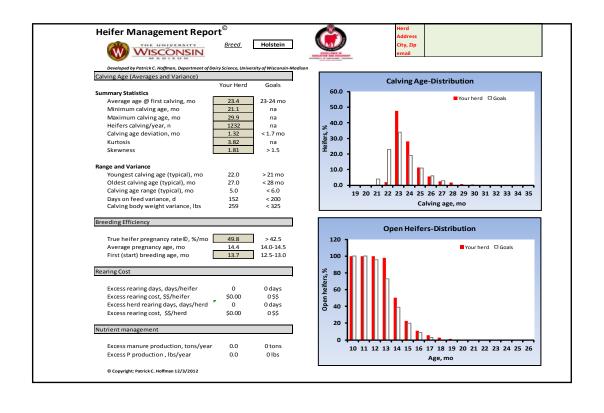

What Influences Age at First Calving

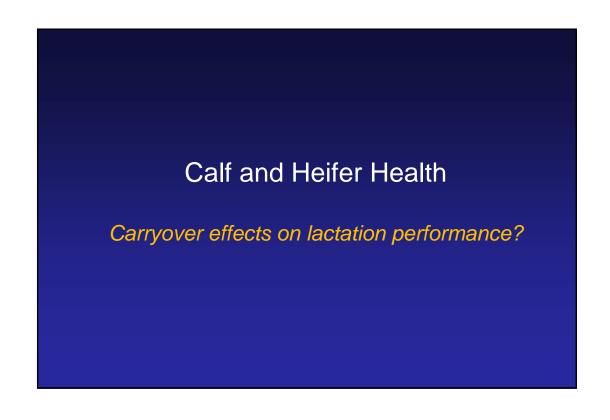

- ADG to Breeding
- Breeding Criteria (Age or BW)
- Service Rate
- Conception Rate


Thinking Points

Herd ages at first calving are distributions


Breeding by weight increases age (days on feed) variance......





Heifer Breeding Criteria Study: Hoffman et al., 2013 (unpublished) - 163 Holstein Heifers - Bred by Age or Weight - High Reproductive Performance (PR = 50 %) **Bred x Age Only – 13 months Bred x Weight Only – 875 lbs Calving Age-Distribution Calving Age-Distribution** 40 40 ■Your herd □ Goals ■Your herd □ Goals 35 35 30 30 Heifers, n 20 15 **⊆** 25 Heifers, 15 15 10 10 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 Calving age, mo Calving age, mo

Enteric Disease - Impacts after 90 days

- 2.5 times more likely to be sold for dairy
- 2.9 times more likely to calve after 900 days On average 1 month after healthy animals (Waltner-Toews et al., 1986)
- Decrease first lactation energy corrected 305d milk production by 670 lbs (Svensson and Hultgren, 2008)
 - Minimal effects in other studies.

Courtesy of Dr. Amy Stanton

VITA PLUS

Calf Summit 2014 • Growing Tomorrow's Herd

An Employee-Owned Company • startingstrong.vitaplus.com

Respiratory Disease: Long-term Impacts

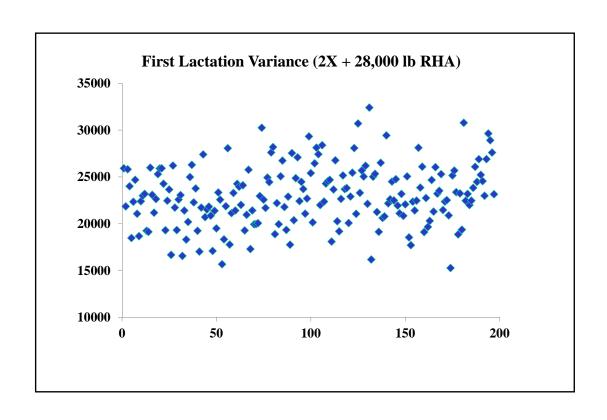
- Increased risk of mortality prior to calving (Waltner-Toews et al., 1986; Stanton, 2012),
- Decreased growth (Virtala et al., 1996, Stanton 2012),
- Increased age at calving (Waltner-Toews et al., 1986;
 Correa et al., 1988, Stanton, 2012)
- Increased the risk of dystocia at first calving (Warnick et al., 1994, Stanton, 2012)
- 4+ cases of BRD = 1.9x more likely to leave during 1st lactation (Bach, 2011)

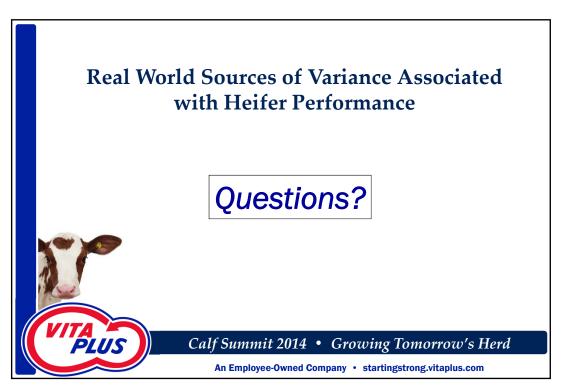
Courtesy of Dr. Amy Stanton

Cornell Study: Calf diseases and milk yield?

- 1st lactation milk yield was not affected by cases of diarrhea.
- Calves treated with antibiotics, produced 1,087 lb less milk in 1st lactation (P > 0.01) than untreated calves.

Courtesy of Dr. Mike VanAmburgh


Some Complexity


- Calves that were treated with antibiotics produced
 623 lb more milk per lb of pre- weaning ADG
- Calves that did not receive antibiotics produced 1,407 lb more milk per lb of pre-weaning ADG.

Courtesy of Dr. Mike VanAmburgh

General Fuzzy Logic Conclusions Why the big variance in milk yield these days

- Genomic PTA's of Holsteins for milk production range from -1000 to +2000
- Breeding value of Holsteins for milk production range from -2000 to + 4000
- Excessively early calving = -1000 lbs of milk
- Deficient Calf ADG = -500 lbs of milk
- Excellent Calf ADG = + 500 lbs of milk
- Multiple Calf Antibiotic Treatments = -1000 lbs of milk
- Lactation events (metritis, mastitis, DD etc) 0 to 2000 lbs of milk
- All guesswork but.....
 - First lactation milk production could range from -6500 to + 4500 lbs of milk or 11,000 lbs

